Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(50): 27576-27586, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38054954

RESUMEN

Dissolution dynamic nuclear polarization (dDNP) is a method of choice for preparing hyperpolarized 13C metabolites such as 1-13C-pyruvate used for in vivo applications, including the real-time monitoring of cancer cell metabolism in human patients. The approach consists of transferring the high polarization of electron spins to nuclear spins via microwave irradiation at low temperatures (1.0-1.5 K) and moderate magnetic fields (3.3-7 T). The solid sample is then dissolved and transferred to an NMR spectrometer or MRI scanner for detection in the liquid state. Common dDNP protocols use direct hyperpolarization of 13C spins reaching polarizations of >50% in ∼1-2 h. Alternatively, 1H spins are polarized before transferring their polarization to 13C spins using cross-polarization, reaching polarization levels similar to those of direct DNP in only ∼20 min. However, it relies on more complex instrumentation, requiring highly skilled personnel. Here, we explore an alternative route using 1H dDNP followed by inline adiabatic magnetic field inversion in the liquid state during the transfer. 1H polarizations of >70% in the solid state are obtained in ∼5-10 min. As the hyperpolarized sample travels from the dDNP polarizer to the NMR spectrometer, it goes through a field inversion chamber, which causes the 1H → 13C polarization transfer. This transfer is made possible by the J-coupling between the heteronuclei, which mixes the Zeeman states at zero-field and causes an antilevel crossing. We report liquid-state 13C polarization up to ∼17% for 3-13C-pyruvate and 13C-formate. The instrumentation needed to perform this experiment in addition to a conventional dDNP polarizer is simple and readily assembled.

2.
Chem Mater ; 35(1): 27-40, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36644214

RESUMEN

Li-containing materials providing fast ion transport pathways are fundamental in Li solid electrolytes and the future of all-solid-state batteries. Understanding these pathways, which usually benefit from structural disorder and cation/anion substitution, is paramount for further developments in next-generation Li solid electrolytes. Here, we exploit a range of variable temperature 6Li and 7Li nuclear magnetic resonance approaches to determine Li-ion mobility pathways, quantify Li-ion jump rates, and subsequently identify the limiting factors for Li-ion diffusion in Li3AlS3 and chlorine-doped analogue Li4.3AlS3.3Cl0.7. Static 7Li NMR line narrowing spectra of Li3AlS3 show the existence of both mobile and immobile Li ions, with the latter limiting long-range translational ion diffusion, while in Li4.3AlS3.3Cl0.7, a single type of fast-moving ion is present and responsible for the higher conductivity of this phase. 6Li-6Li exchange spectroscopy spectra of Li3AlS3 reveal that the slower moving ions hop between non-equivalent Li positions in different structural layers. The absence of the immobile ions in Li4.3AlS3.3Cl0.7, as revealed from 7Li line narrowing experiments, suggests an increased rate of ion exchange between the layers in this phase compared with Li3AlS3. Detailed analysis of spin-lattice relaxation data allows extraction of Li-ion jump rates that are significantly increased for the doped material and identify Li mobility pathways in both materials to be three-dimensional. The identification of factors limiting long-range translational Li diffusion and understanding the effects of structural modification (such as anion substitution) on Li-ion mobility provide a framework for the further development of more highly conductive Li solid electrolytes.

3.
Chem Rev ; 123(4): 1417-1551, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36701528

RESUMEN

Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.

4.
Anal Chem ; 95(2): 720-729, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36563171

RESUMEN

Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method to enhance signals in zero-field nuclear magnetic resonance experiments on sample mixtures of [13C]sodium formate, [1-13C]glycine, and [2-13C]sodium acetate, and our technique is immediately extendable to a broad range of molecules with >1 s relaxation times. We find signal enhancements of up to 11,000 compared with thermal prepolarization in a 2 T permanent magnet. To increase the signal in future experiments, we investigate the relaxation effects of the TEMPOL radicals used for the hyperpolarization process at zero- and ultralow-fields.


Asunto(s)
Imagen por Resonancia Magnética , Solubilidad , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos
5.
J Labelled Comp Radiopharm ; 65(14): 361-368, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272110

RESUMEN

A synthesis of N-monodeuteriomethyl-2-substituted piperidines is described. An efficient and readily scalable anodic methoxylation of N-formylpiperidine in an undivided microfluidic electrolysis cell delivers methoxylated piperidine 3, which is a precursor to a N-formyliminium ion and enables C-nucleophiles to be introduced at the 2-position. The isotopically labelled N-deuteriomethyl group is installed using the Eschweiler-Clarke reaction with formic acid-d2 and unlabelled formaldehyde. Monodeuterated N-methyl groups in these molecular systems possess small isotropic proton chemical shift differences important in the investigation of molecules that are able to support long-lived nuclear spin states in solution nuclear magnetic resonance.


Asunto(s)
Piperidinas , Electroquímica , Piperidinas/química
6.
J Phys Chem B ; 126(33): 6281-6289, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35973071

RESUMEN

Magic angle spinning nuclear magnetic resonance spectroscopy experiments are widely employed in the characterization of solid media. The approach is incredibly versatile but deleteriously suffers from low sensitivity, which may be alleviated by adopting dynamic nuclear polarization methods, resulting in large signal enhancements. Paramagnetic metal ions such as Gd3+ have recently shown promising results as polarizing agents for 1H, 13C, and 15N nuclear spins. We demonstrate that the widely available and inexpensive chemical agent Gd(NO3)3 achieves significant signal enhancements for the 13C and 15N nuclear sites of [2-13C,15N]glycine at 9.4 T and ∼105 K. Analysis of the signal enhancement profiles at two magnetic fields, in conjunction with electron paramagnetic resonance data, reveals the solid effect to be the dominant signal enhancement mechanism. The signal amplification obtained paves the way for efficient dynamic nuclear polarization without the need for challenging synthesis of Gd3+ polarizing agents.


Asunto(s)
Campos Magnéticos , Metales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Iones , Espectroscopía de Resonancia Magnética/métodos
7.
Phys Chem Chem Phys ; 24(10): 5956-5964, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35195621

RESUMEN

Typical magnetic resonance experiments are routinely limited by weak signal responses. In some cases, the low intrinsic sensitivity can be alleviated by the implementation of hyperpolarization technologies. Dissolution-dynamic nuclear polarization offers a means of hyperpolarizing small molecules. Hyperpolarized water is employed in several dynamic nuclear polarization studies, and hence accurate and rapid quantification of the 1H polarization level is of utmost importance. The solid-state nuclear magnetic resonance spectrum of water acquired under dissolution-dynamic nuclear polarization conditions has revealed lineshapes which become asymmetric at high levels of 1H polarization, which is an interesting fundamental problem in itself, but also complicates data interpretation and can prevent correct estimations of polarization levels achieved. In previous studies, attempts to simulate the 1H spectral lineshape of water as a function of the 1H polarization led to significant disagreement with the experimental results. Here we propose and demonstrate that such simulations, and therefore polarization quantification, can be implemented accurately, in particular by taking into account the detector dead time during 1H signal acquisition that can lead to severe spectral distortions. Based on these findings, we employed an echo-based radiofrequency pulse sequence to achieve distortion-free 1H spectra of hyperpolarized water, and adequate simulations of these echo-based spectra were implemented to extract the absolute 1H polarization level from the hyperpolarized water signal only, thus alleviating the need for lengthy and insensitive measurements of thermal equilibrium signals.


Asunto(s)
Hielo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Agua
8.
Prog Nucl Magn Reson Spectrosc ; 126-127: 59-100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34852925

RESUMEN

This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.


Asunto(s)
Espectroscopía de Resonancia Magnética , Solubilidad
9.
Solid State Nucl Magn Reson ; 116: 101762, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34823210

RESUMEN

A strategy of dipolar order mediated nuclear spin polarization transfer has recently been combined with dissolution-dynamic nuclear polarization (dDNP) and improved by employing optimized shaped radiofrequency pulses and suitable molecular modifications. In the context of dDNP experiments, this offers a promising means of transferring polarization from high-gamma 1H spins to insensitive 13C spins with lower peak power and lower energy compared with state-of-the-art cross-polarization schemes. The role of local molecular groups and the glassing matrix protonation level are both postulated to play a key role in the polarization transfer pathway via an intermediary reservoir of dipolar spin order. To gain appreciation of the mechanisms involved in the dipolar order mediated polarization transfer under dDNP conditions, we investigate herein the influence of the pivotal characteristics of the sample makeup: (i) revising the protonation level for the constituents of the DNP glass; and (ii) utilizing deuterated molecular derivatives. Experimental demonstrations are presented for the case of [1-13C]sodium acetate. We find that the proton sample molarity has a large impact on both the optimal parameters and the performance of the dipolar order mediated cross-polarization sequence, with the 13C signal build-up time drastically shortened in the case of high solvent protonation levels. In the case of a deuterated molecular derivative, we observe that the nearby 2H substituted methyl group is deleterious to the 1H→13C transfer phenomenon (particularly at low levels of sample protonation). Overall, increased solvent protonation makes the dipolar order governed polarization transfer significantly faster and more efficient. This study sheds light on the influential sample formulation traits which govern the dipolar order-controlled transfer of polarization and indicates that the polarization transfer efficiencies of deuterated molecules can be boosted and reach high performances simply by adequate solvent protonation.


Asunto(s)
Protones , Ondas de Radio , Espectroscopía de Resonancia Magnética , Solubilidad , Solventes
10.
Phys Chem Chem Phys ; 23(31): 16932-16941, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34337629

RESUMEN

The uniformly anisotropic media afforded by hydrogels are being increasingly exploited in analytical (structure elucidation) nuclear magnetic resonance (NMR) spectroscopy, and in studies of mechanosensitive biophysical and biochemical properties of living cells. The 9Be NMR parameters of beryllium fluoride complexes formed in aqueous solutions are sensitive markers of the anisotropic molecular environments produced by gelatin gels. The electric quadrupole moment of the 9Be nucleus (spin I = 3/2) interacts with the electric field gradient tensor in a stretched (or compressed) gel, giving rise to the splitting of peaks in 9Be NMR spectra. These are in addition to those produced by scalar coupling to the 19F nuclei. Thus, an equilibrium mixture of beryllofluoride complexes (BeF2, BeF3-, and BeF42-) in mechanically distorted gels generates an envelope of overlapping 9Be NMR multiplets. In the present work, the multiplets were dissected apart by using selective excitation of 9Be-19F cross-polarization; and the spectral components were quantified with multi-parameter line-shape decomposition, coupled with SpinDynamica simulations. The effects of gel density and Bloom number (a measure of gelatin-gel rigidity under standard conditions of sample preparation) on residual quadrupolar splittings were examined. Cross-polarization experiments revealed a bimodal distribution of  residual quadrupolar coupling constants (RQC) of the BeF3- complexes. The average RQC of the dominant BeF3- population was ∼3 times larger than that of BeF42-. The secondary BeF3- population existed in a tetrahedral configuration. It was attributed to BeF3- complexes associated with negatively charged -COO- groups of the denatured collagen matrix.

11.
Sci Adv ; 7(18)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33931450

RESUMEN

Dynamic nuclear polarization (DNP) is a widely used tool for overcoming the low intrinsic sensitivity of nuclear magnetic resonance spectroscopy and imaging. Its practical applicability is typically bounded, however, by the so-called "spin diffusion barrier," which relates to the poor efficiency of polarization transfer from highly polarized nuclei close to paramagnetic centers to bulk nuclei. A quantitative assessment of this barrier has been hindered so far by the lack of general methods for studying nuclear polarization flow in the vicinity of paramagnetic centers. Here, we fill this gap and introduce a general set of experiments based on microwave gating that are readily implemented. We demonstrate the versatility of our approach in experiments conducted between 1.2 and 4.2 K in static mode and at 100 K under magic angle spinning (MAS)-conditions typical for dissolution DNP and MAS-DNP-and directly observe the marked dependence of polarization flow on temperature.

12.
Phys Chem Chem Phys ; 23(15): 9457-9465, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885108

RESUMEN

We have recently demonstrated the use of contactless radiofrequency pulse sequences under dissolution-dynamic nuclear polarization conditions as an attractive way of transferring polarization from sensitive 1H spins to insensitive 13C spins with low peak radiofrequency pulse powers and energies via a reservoir of dipolar order. However, many factors remain to be investigated and optimized to enable the full potential of this polarization transfer process. We demonstrate herein the optimization of several key factors by: (i) implementing more efficient shaped radiofrequency pulses; (ii) adapting 13C spin labelling; and (iii) avoiding methyl group relaxation sinks. Experimental demonstrations are presented for the case of [1-13C]sodium acetate and other relevant molecular candidates. By employing the range of approaches set out above, polarization transfer using the dipolar order mediated cross-polarization radiofrequency pulse sequence is improved by factors approaching ∼1.65 compared with previous results. Dipolar order mediated 1H→13C polarization transfer efficiencies reaching ∼76% were achieved using significantly reduced peak radiofrequency pulse powers relative to the performance of highly sophisticated state-of-the-art cross-polarization methods, indicating 13C nuclear spin polarization levels on the order of ∼32.1% after 10 minutes of 1H DNP. The approach does not require extensive pulse sequence optimization procedures and can easily accommodate high concentrations of 13C-labelled molecules.

13.
Magn Reson (Gott) ; 2(1): 421-446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37904769

RESUMEN

We describe an approach to formulating the kinetic master equations of the time evolution of NMR signals in reacting (bio)chemical systems. Special focus is given to studies that employ signal enhancement (hyperpolarization) methods such as dissolution dynamic nuclear polarization (dDNP) and involving nuclear spin-bearing solutes that undergo reactions mediated by enzymes and membrane transport proteins. We extend the work given in a recent presentation on this topic (Kuchel and Shishmarev, 2020) to now include enzymes with two or more substrates and various enzyme reaction mechanisms as classified by Cleland, with particular reference to non-first-order processes. Using this approach, we can address some pressing questions in the field from a theoretical standpoint. For example, why does binding of a hyperpolarized substrate to an enzyme not cause an appreciable loss of the signal from the substrate or product? Why does the concentration of an unlabelled pool of substrate, for example 12C lactate, cause an increase in the rate of exchange of the 13C-labelled pool? To what extent is the equilibrium position of the reaction perturbed during administration of the substrate? The formalism gives a full mechanistic understanding of the time courses derived and is of relevance to ongoing clinical trials using these techniques.

14.
Magn Reson (Gott) ; 2(2): 643-652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37905218

RESUMEN

Dissolution dynamic nuclear polarization is used to prepare nuclear spin polarizations approaching unity. At present, 1H polarization quantification in the solid state remains fastidious due to the requirement of measuring thermal equilibrium signals. Line shape polarimetry of solid-state nuclear magnetic resonance spectra is used to determine several useful properties regarding the spin system under investigation. In the case of highly polarized nuclear spins, such as those prepared under the conditions of dissolution dynamic nuclear polarization experiments, the absolute polarization of a particular isotopic species within the sample may be directly inferred from the characteristics of the corresponding resonance line shape. In situations where direct measurements of polarization are complicated by deleterious phenomena, indirect estimates of polarization using coupled heteronuclear spins prove informative. We present a simple analysis of the 13C spectral line shape of [2-13C]sodium acetate based on the normalized deviation of the centre of gravity of the 13C peaks, which can be used to indirectly evaluate the proton polarization of the methyl group moiety and very likely the entire sample in the case of rapid and homogeneous 1H-1H spin diffusion. For the case of positive microwave irradiation, 1H polarization was found to increase with an increasing normalized centre of gravity deviation. These results suggest that, as a dopant, [2-13C]sodium acetate could be used to indirectly gauge 1H polarizations in standard sample formulations, which is potentially advantageous for (i) samples polarized in commercial dissolution dynamic nuclear polarization devices that lack 1H radiofrequency hardware, (ii) measurements that are deleteriously influenced by radiation damping or complicated by the presence of large background signals and (iii) situations where the acquisition of a thermal equilibrium spectrum is not feasible.

15.
Chemistry ; 26(60): 13606-13610, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32452589

RESUMEN

The grafting of imidazole species onto coordinatively unsaturated sites within metal-organic framework MIL-101(Cr) enables enhanced CO2 capture in close proximity to catalytic sites. The subsequent combination of CO2 and epoxide binding sites, as shown through theoretical findings, significantly improves the rate of cyclic carbonate formation, producing a highly active CO2 utilization catalyst. An array of spectroscopic investigations, in combination with theoretical calculations reveal the nature of the active sites and associated catalytic mechanism which validates the careful design of the hybrid MIL-101(Cr).

16.
Br J Community Nurs ; 24(Sup6): S30-S37, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166798

RESUMEN

Wound care forms a large component of the ever-increasing workload of district and community nurses. The need for a cost-effective product that can be used on a variety of wounds and that meets multiple requirements (e.g. protease modulation, anti-microbial, peri-wound skin protection, maceration control and barrier function) is well recognised. The plethora of wound dressings available today all fulfil some, although not all, of these requirements. Choosing the correct dressing decreases healing time, provides cost-effective care and improves patient quality of life. This article looks at the important properties of wound care products, investigates the need to release nurse time and describes how patients with wounds can engage in effective self-care, with a focus on 1 Primary Wound Dressing® (1PWD), a cost effective, easy-to-use product that has already demonstrated clinical efficacy. Case studies showing the successful use of 1PWD are also presented to highlight the clinical application of this novel product.


Asunto(s)
Vendajes , Esclerosis Múltiple , Autocuidado , Úlcera Cutánea/prevención & control , Disrafia Espinal , Dehiscencia de la Herida Operatoria/prevención & control , Adulto , Enfermería en Salud Comunitaria , Femenino , Humanos , Masculino , Persona de Mediana Edad , Úlcera Cutánea/enfermería , Dehiscencia de la Herida Operatoria/enfermería
17.
J Magn Reson ; 301: 49-55, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30851665

RESUMEN

We introduce a simple strategy to access and readout nuclear singlet order based on the alternate repetition of hard pulses and delays. We demonstrate the general applicability of the method by accessing nuclear singlet order in spin systems characterized by diverse coupling regimes. We show that the method is highly efficient in the strong-coupling and chemical equivalence regimes, and can overcome some limitations of other well-established and more elaborated pulse sequences. A simulation package is provided which allows the determination of pulse sequence parameters.

18.
Angew Chem Int Ed Engl ; 58(15): 5038-5043, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30773760

RESUMEN

The endohedral fullerene CH4 @C60 , in which each C60 fullerene cage encapsulates a single methane molecule, has been synthesized for the first time. Methane is the first organic molecule, as well as the largest, to have been encapsulated in C60 to date. The key orifice contraction step, a photochemical desulfinylation of an open fullerene, was completed, even though it is inhibited by the endohedral molecule. The crystal structure of the nickel(II) octaethylporphyrin/ benzene solvate shows no significant distortion of the carbon cage, relative to the C60 analogue, and shows the methane hydrogens as a shell of electron density around the central carbon, indicative of the quantum nature of the methane. The 1 H spin-lattice relaxation times (T1 ) for endohedral methane are similar to those observed in the gas phase, indicating that methane is freely rotating inside the C60 cage. The synthesis of CH4 @C60 opens a route to endofullerenes incorporating large guest molecules and atoms.

19.
RSC Adv ; 9(40): 23418-23424, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35514498

RESUMEN

Nuclear singlet lifetimes are often dependent on the quantity of paramagnetic oxygen species present in solution, although the extent to which quenching or removing molecular oxygen has on extending singlet lifetimes is typically an unknown factor. Here we investigate the behaviour of the singlet relaxation time constant as a function of the oxygen concentration in solution. An experimental demonstration is presented for a chemically inequivalent proton pair of the tripeptide alanine-glycine-glycine in solution. We introduce a simple methodology to ensure the solution is saturated with predetermined concentrations of oxygen gas prior to measurements of the singlet lifetime. Singlet lifetimes were measured by using the spin-lock induced crossing pulse sequence. We present a linear relationship between the amount of oxygen dissolved in solution and the singlet relaxation rate constant. Singlet relaxation was found to be ∼2.7 times less sensitive to relaxation induced by paramagnetic oxygen compared with longitudinal relaxation. The relaxation behaviour is described by using a model of correlated fluctuating fields. We additionally examine the extension of singlet lifetimes by doping solutions with the chelating agent sodium ascorbate, which scavenges oxygen radicals in solution.

20.
Phys Rev Lett ; 120(26): 266001, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004780

RESUMEN

Water exists in two forms, para and ortho, that have nuclear spin states with different symmetries. Here we report the conversion of fullerene-encapsulated para water to ortho water. The enrichment of para water at low temperatures is monitored via changes in the electrical polarizability of the material. Upon rapid dissolution of the material in toluene the excess para water converts to ortho water. In H_{2}^{16}O@C_{60} the conversion leads to a slow increase in the NMR signal. In H_{2}^{17}O@C_{60} the conversion gives rise to weak signal enhancements attributed to quantum-rotor-induced nuclear spin polarization. The time constants for the para-to-ortho conversion of fullerene-encapsulated water in ambient temperature solution are estimated as 30±4 s for the ^{16}O isotopolog of water, and 16±3 s for the ^{17}O isotopolog.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...